Dimensions minimales d'un caisson

Niveau	Domaine	Modules
Terminale professionnelle	Algèbre-Analyse	Fonctions polynômes de degré 3
		Algorithmique et programmation

Cette activité est présentée pour une mise en œuvre avec l'outil Capytale mais peut être adaptée à n'importe quel autre environnement Python (Edupython, IDE,...).

ÉNONCÉ ÉLÈVE

Une île qui n'a pas de déchèterie doit transporter ses déchets sur le continent afin de les traiter.

Une fois compactés, le volume des déchets est de 15 m³ par jour.

Ils sont placés dans un caisson de compactage en forme de cube.

Les dimensions sont en mètres.

Problématique : Quelle doit être la valeur minimale de x qui permet de stocker deux jours de déchets ?

- 1. Le volume du cube sera-t-il suffisant pour stocker deux jours de déchets si x = 4? Justifier.
- 2. Le volume du cube peut être modélisé par une fonction f définie sur l'intervalle [0; 4] par $f(x) = x^3$
 - a. Calculer f(1).
 - b. Le volume du cube sera-t-il suffisant pour stocker deux jours de déchets si x = 1? Justifier.
- 3. Utilisation d'un programme Python pour répondre à la problématique :
 - a. Le programme inscrit dans la partie SCRIPT doit permettre d'afficher l'image d'un nombre x par la fonction f. Compléter le programme
 - b. Tester votre programme pour x = 4 puis pour x = 1.

Vos résultats sont-ils cohérents avec ceux obtenus aux questions 1 et 2a. ?

c. En utilisant le programme, déterminer la valeur minimale de x qui permet de stocker deux jours de déchets. Donner la valeur attendue avec une précision de deux chiffres après la virgule.

SCRIPT proposé aux élèves :

```
def f(x):
    f=x**3
    print(.....)
```

SCRIPT pour l'enseignant en version à « copier-coller » pour gagner du temps :

```
def f(x):
f=x**3
print(.....)
```

PROPOSITION DE CORRIGÉ

1. $4 \times 4 \times 4 = 64$ Le volume du caisson de compactage est de 64 m³ ce qui permet bien de stocker deux jours de déchets, soit 30 m³.

```
2.a. f(1) = 1^3 f(1) = 1
```

2.b. Si x = 1, alors le volume du caisson est de 1 m³, ce qui ne permet pas de stocker deux jours de déchets.

3.a. Programme complété:

```
def f(x):
    f=x**3
    print(f)
```

3.b. Extrait de la console :

```
>>> # script executed
>>> f(1)
1
>>> f(4)
64
```

On retrouve bien les résultats des questions 1 et 2.a.

3.c. Extrait de la console :

```
>>> f(3.5)
42.875
>>> f(3.3)
35.937
>>> f(3.2)
32.768
>>> f(3.1)
29.791
>>> f(3.15)
31.255874999999996
>>> f(3.12)
30.371328000000002
>>> f(3.11)
30.080230999999998
```

Pour stocker deux jours de déchets, la valeur minimale de *x* doit être de 3,11 m.