

ATELIER MICROCONTROLEUR

- Présentation du matériel (carte, plaque), du logiciel Arduino Software IDE et du langage (syntaxe)
- Activités de prise en main et de mise en œuvre d'un microcontrôleur

Formations Nouveaux programmes de lycée Physique-Chimie (J2) Mai - Juin 2019 Formations Nouveaux programmes 2019 Physique-Chimie (J2)

Présentation du microcontrôleur Arduino Uno

Les principales commandes du langage Arduino (C/C++)

Conditionnelles :

- if (test vrai){
 action 1;
 }
 else
 - {
 - action 2;

Boucles

- for (pour...)
- while (tant que...)

Comparaisons

- == (équivalent à)
- != (différent de)
- <;>;<=;>=

Variables :

- char (caractère)
- int (entier)
- float (décimal)
- boolean (true/false)

Etat/Niveaux logiques des sorties numériques

- LOW (état bas, 0V)
- HIGH (état haut , 5V)

Entrée/Sorties numériques :

- INPUT (entrée)
- OUTPUT (sortie)
- pinMode(N°broche,INPUT/OUTPUT) : fixe la broche en entrée ou en sortie
- digitalWrite(broche,état) : écrit un état sur une broche numérique
- analogRead(broche): retourne un entier entre 0 et 1023 correspondant à 0 et 5V
- analogWrite(broche,valeur) : Mode PWL permet de simuler une sortie analogique sur une broche numérique ~ valeur est un nombre compris entre 0 et 255

Affichage :

• Serial.println(variable) : affiche la valeur de la variable dans le moniteur série

Gestion du temps :

- delay(ms) : attends la valeur indiquée en ms
- delayMicrosecond(µs)

Formations Nouveaux programmes 2019 Physique-Chimie (J2)

Activités de prise en main et de mise en œuvre d'un microcontrôleur

Activité 1 : Allumer une LED

Pour aller plus loin : la faire clignoter Pour aller encore plus loin : moduler l'intensité lumineuse

Activité 2 : Produire un son

Pour aller plus loin : jouer une mélodie (Au clair de la lune)

Activité 3 : Mesure d'une distance

Pour aller plus loin : paramétrer la vitesse du son par une mesure de la température

Activité 4 : Eclairage automatique (J1)

Brancher une LED et un conducteur ohmique ($R = 220 \Omega$) entre la sortie numérique 13 et la masse :

1- Allumer une diode

Dans le logiciel Arduino IDE, la programmation se fait de la façon suivante :

Enregistrer le programme et cliquer sur o pour le vérifier et sur o pour le téléverser dans la carte

NB : en cas de message d'erreur, s'assurer que la carte est reconnue sur le bon port à l'aide du menu Outils / Ports

1- Allumer une diode Pour aller plus loin

Faire clignoter la diode :

Modifier votre programme pour faire clignoter la led (1s allumée et 0,5s éteinte) L'instruction **delay(n)** réalise une pose de n millisecondes dans l'exécution du programme

Faire varier l'intensité lumineuse :

La carte ne possède pas de sortie analogique mais les sorties logiques n°3, 5, 6, 9, 10, et 11 possèdent un mode PWM(~) *Pulse Width Modulation* permettant de simuler une sortie analogique à l'aide de l'instruction **analogWrite(broche,n)** avec n compris entre 0 et 255

Réaliser le montage suivant : le HP, protégé par une résistance $R = 220 \Omega$, est alimenté par la sortie numérique 9 :

Compléter le code pour obtenir la note La₃ (440 Hz)

Alternative : la fonction tone(broche, frequence, duree en ms)

Réaliser le programme permettant de jouer la mélodie suivante :

3- Mesure de distance

Nous allons utiliser le module ultrasons HC-SR04 qui possède 4 bornes :

- Vcc : alimentation 5V
- Gnd : Masse 0V
- Trig : Emission signal
- Echo : Réception signal

3- Mesure de distance

Réaliser le câblage du montage correspondant au programme suivant :

MesureDistance §	
<pre>int trig = 8; int echo = 9; long temps; long distance; long vitesse;</pre>	^
<pre>void setup() { pinMode(trig, OUTPUT); pinMode(echo, INPUT); Serial.begin(9600); vitesse=340; } void loop() { digitalWrite(trig, HIGH); delayMicroseconds(10); digitalWrite(trig, LOW); temps = pulseIn(echo, HIGH); distance = temps*vitesse/(2*10000); Serial.print("Distance en cm : "); Serial.println(distance); delay(1000);</pre>	
1	~

3- Mesure de distance Pour aller plus loin

Dans le programme précédent la vitesse du son est rentrée « en dur » dans le script.

La vitesse du son peut être calculée à l'aide de la formule v = 20,05 \sqrt{T}

Le programme ci-contre exploite un capteur de température dht11 en affichant la température (en $^{\circ}$ C) dans le moniteur série.

NB : la bibliothèque dht11 (fournie dans le cours Moodle) est à installer dans le répertoire Arduino/libraries

Modifier le programme précédent pour que la mesure de la distance soit paramétrée par la mesure de la température modifiant la valeur de v.

🥺 temp2 Arduino 1.8.8		8—8		×
Fichier Édition Croquis Outils Aide				
				ø
temp2 §				
<pre>#include <dhtll.h> // On charge la librair: dhtll DHTll; // On crée l'objet du capteur #define DHTll_PIN 2 // On définit le PIN qu</dhtll.h></pre>	ie 11 sera utilisée pou	ır les	donnée	s
<pre>void setup() { Serial.begin(115200); // On initialise }</pre>	la liaison série			
<pre>void loop()[] int chk = DHT11.read(DHT11_PIN); // On v. Serial.print("Temperature : "); // Et la Serial.print((float)DHT11.temperature, 1) Serial.println(" degres.");</pre>	a lire l'état du car température);	oteur		
<pre>Serial.println(""); delay(3000);// Pause entre 2 interogation }</pre>	ns.			
	Temporatur	e & Humidit	DOUT	
16				

4- Eclairage automatique (J1)

