Volcanisme

Distribution Processus Dépôts Outre-mer France

Montserrat, AM Lejeune

1

Harrat Khaybar, Arabie, NAS

Pourquoi s'intéresser aux volcans ?

- Comprendre
- Maitriser l'aléa et Prévenir les risques
- Faire l'inventaire des géoressources : eau, minéraux, métaux, énergie
- Aménager le territoire

Diversité géodynamique

Distribution volcanisme et paléovolcanisme

CCGM; Ph Bouysse; modifié Nehlig

Distribution du volcanisme actuel

Contextes géodynamiques

Productions magmatiques / volcaniques

Dorsales : Magma 20 km3/an (Volc 3 km3/an)

Subductions : Magma 10 km3/an (Volc 1 km3/an)

Intraplaque : Magma : 2 km3/an (Volc 0,5 km3/an)

Magmas ?

- Eruptions volcaniques résultent de l'émission de magma en surface
- Magma = mélange de liquide + cristaux + gaz
- Gaz = H20 > CO2, + S, Cl, F
- Gaz rhyolite > gaz basaltes
- Température des magmas fct composition
- Viscosité des magmas fct composition; fct température; fct teneur en gaz

De l'Eau dans les Magmas

Compilation des données de concentration en eau et en CO2 dans les inclusions vitreuses des basaltes. Données des volcans d'arc d'Amérique Centrale (Fuego, Fg ; Cerro Negro ; Guatemala en arrière du front volcanique, Guat BVF), de la ceinture volcanique trans-mexicaine (Mexico), du Stromboli (Stromb) et du Galunggung (G). A titre de comparaison, les données pour les N-MORB (point), E-MORB (rectangle), et pour le Kilauea, La Réunion et un OIB de la chaine des Cascades (Cas OIB) sont figurées. D'après Wallace (2005); Pichavant 2011

Variation de la concentration en eau dissoute en fonction de la pression pour différents liquides silicatés de composition (1) basaltique, (2) andésitique, (3) granitique et (4) pegmatitique. Données à 1100°C et à l'équilibre avec une phase vapeur composée essentiellement d'eau pure (définition de la solubilité de l'eau). D'après Burnham (1979); Pichavant (2011)

Variation de la viscosité d'un liquide silicaté de composition andésitique en fonction de la teneur en eau dissoute à différentes températures. D'après Mysen et Richet (2005) ; Pichavant (2011)

Diagramme de phases du système diopside (Di) – anorthite (An) (1) à sec à 0.1 MPa (1 atmosphère), (2) à sec à 1 GPa et (3) avec un excès d'eau à 1 GPa (PH2O = Ptotale). D'après Winter (2001); Pichavant (2011)

Les racines du volcanisme

Schmincke

Fusion des minéraux

Fusion sèche

Fusion hydratée

Fusion des roches

Fusion sèche

Fusion hydratée

Fusion par baisse de pression adiabatique

Niu et Hékinian, nature, 1997

Canaries : lithosphère épaisse, faible décompression du panache, faible taux de fusion. Les tholéiites sont rares

Islande : lithosphère très mince, taux de fusion du panache important, beaucoup de tholéiites

Best et Christiansen, p. 363

Décompression adiabatique

CCGM; Ph Bouysse; modifié Nehlig

Fusion par hydratation

Structure thermique calculée de la zone de subduction NE Japon

Fusion par hydratation : zones de subduction

CCGM; Ph Bouysse; modifié Nehlig

Fusion par augmentation de la température

Classification du volcanisme

- Lithologique
- Pétrologique
- Géochimique
- Dynamismes éruptifs
- Volume,
- Explosivité,
- ..

Caractéristiques pétrographiques

Basalte

Riche en phénocristaux d'olivine, pyroxène, plagioclase et oxydes ferro-titanés

Prouteau

Phénocristaux de pyroxène plagioclase, amphibole et oxydes ferro-titanés

Dacite

Phénocristaux de plagioclase, amphibole, biotite, quartz et oxydes ferro-titanés

Classification minéralogique des roches volcaniques

Classification chimique des roches volcaniques

Réunion

NI 1 11 1 1 1

Cantal

Nehlig

Dyke

Chambres magmatiques ?

- Affleurent : ophiolites, racines des orogènes,
- Roches plutoniques en enclaves dans les laves
- Géométries et tailles variables

Mécanismes d'évolution des magmas La cristallisation fractionnée

Chambre magmatique à l'aplomb du Mont Pinatubo (zone de transfert et de stockage des magmas), révélée par les données sismiques.

L'assimilation couplée à la cristallisation fractionnée (AFC)

Enclave de socle partiellement assimilée dans une dacite (arc d'Ambon, Indonésie)

Prouteau

Effusion, extrusion, explosion, caldéra...

Eruption plinienne Pinatubo

- 1991
- volume de matériaux émis est estimé à 10 km3
- Hauteur cendres 34 km
- Nuées ardentes > 16 km
- Nuage de cendres >125 000 km2

 refroidissement général de 0,6 °C de moyenne pendant deux à trois ans,

Mauna Loa Observatory Atmospheric Transmission

Effusif vs explosif

D'après Jaupart, 2000

Coulées pyroclastiques vs panaches pliniens

Indice d'explosivité volcanique

VEI	Classification	Description	Hauteur du nuage de cendres	Volume éjecté	Fréquence d'éruptions	Exemple	Nombre d'éruptions historiques
0	Hawaïen	non explosif	< 100 m	> 1 000 m³	quotidien	Kilauea	-
1	Hawaïen / Strombolien	modéré	100-1 000 m	> 10 000 m ³	quotidien	Stromboli	-
2	Strombolien / Vulcanien	explosif	1-5 km	> 1 000 000 m ³	hebdomadaire	Galeras, 1992	3631
3	Vulcanien	catastrophique	3-15 km	> 10 000 000 m ³	annuel	Nevado del Ruiz, 1985	924
4	Vulcanien Plinien	cataclysmique	10-25 km	> 0,1 km³	≥ 10 ans	Galunggung, 1982	307
5	Plinien	paroxysmique	> 25 km	> 1 km³	≥ 50 ans	Vésuve, 79 ; Mont Saint Helens, 1980	106
6	Plinien / Ultra-Plinien	colossal	> 25 km	> 10 km³	≥ 100 ans	Krakatoa, 1883 ; éruption minoenne (Santorin), 1600 avant JC	46
7	Ultra-Plinien	méga-colossal	> 25 km	> 100 km³	≥ 1 000 ans	Tambora <i>,</i> 1815	4
8	Ultra-Plinien Supervolcan	apocalyptique	> 25 km	> 1 000 km³	≥ 10 000 ans	Toba, 74 000 ans ; Yellowstone, 600 000 ans	0

Toba 100x30 km, Sumatra

Taal Caldera : 500 000 à 100 000 ans; 25 km de diamètre ; dernière éruption 1977 : phréatique

Cône de scories stromboliens

Stromboli 2007

Eruption phréatomagmatique

Une émission violente de vapeur et de cendres en 2001 suite à une éruption phréatomagmatique latérale de l'Etna, Italie. Le petit cône est formé par l'accumulation d'éjectats pyroclastiques. © M. L. Carapezza.

Harrat Khaybar, Arabie, NASA

Lahars

Avalanches de débris

Mt. St. Helens, 18 Mai, 1980

Volcanisme en France

Outre-Mer France Massif central Chaîne des Puys Cantal

	Population	Densité	Superficie	ZEE
<u>Bassas da India</u>	0	0	1	123700
<u>Clipperton</u>	0	0	6	425220
Archipel des Crozet	20	0.04	505	562000
<u>Europa</u>	15	0.54	28	127300
<u>Îles Glorieuses</u>	15	3	5	48350
<u>Guadeloupe</u>	440000	258.52	1702	86000
<u>Guyane</u>	170000	1.87	91000	130140
Juan de Nova	15	3.75	4	61050
<u>Îles Kerguelen</u>	100	0.01	6993	547000
<u>Martinique</u>	394000	349.29	1128	47000
<u>Mayotte</u>	178000	475.94	374	62000
Nouvelle-Amsterdam	20	0.33	60	205000
Nouvelle-Calédonie	170000	8.92	19058	1740000
Polynésie française	250000	59.52	4200	4867370
<u>Réunion</u>	760000	302.55	2512	318300
<u>Île Saint-Barthélemy</u>	6852	326.29	21	4000
<u>Île Saint Martin</u>	28524	528.22	54	1000
<u>Saint-Paul</u>	0	0	7	260000
Saint-Pierre-et-Miquelon	6530	26.98	242	10000
Tromelin	5	5	1	280000
Wallis et Futuna	15000	75	200	271050
France d'outre-mer (sans la Terre Adélie)	2419096	18.88	128101	10176480

4+1 DOM dont 4 volcaniques et 3 volcans avec une activité historique

Diversité géodynamique

Les archipels de Polynésie Française - Magmatisme intraplaque océanique

Pacifique Sud 15 millions de km² avec 5000 km² de terres émergées CO d'âge Crétacé Sup- Oligocène, moins profonde de 250 à 750 m que ses équivalents Pac N ou Atl N : superbombement Polynésien **Depuis ca 40 Ma : activité volcanique ininterrompue**

Cinq alignements:

- -Autrales-Cook
- -Société
- -Pitcairn-Gambier (prolongé par atolls

de Mururoa et Duc de Gloucester)

-Tuamotou

-Marquises

Direction d'ensemble SE-NW (sauf Marquises) ~ déplacement absolu de la Plaque Pacifique (11 cm/an)

Volcans actifs ou très récents au SE Indiquent la position du "Point chaud"

Cartographie géologique outre-mer

	Raster								
	1/12 500	1/20 000	1/25 000	1/30 000	1/40 000	1/50 000	1/100 000	1/500 000	
GUADELOUPE		Saint-Barthélémy	la Désirade			Saint-martin			
		Les Saintes				Grade-Terre			
						Basse-Terre			
						Marie-Galante			
GUYANE							Baie de Oyapock	Guyane	
							Cayenne		
							Haut Kourou		
							Kourou		
							Iracoubo		
							Point Behague		
							Régina		
							St-Elie-Adieu-Vat		
MARTINIQUE						Martinique			
POLYNESIE	Raïvavae		Eiao	Ua Huka	Huahine	Nuku Hiva	Raiatea et Tahaa		
							Hiva Ua		
							(en cours de		
			Rurutu et Tubuai	Bora-Bora / Maupiti	Tahiti		validation CCGF)		
			Moorea	Ua Pou (en cours)					
REUNION						Réunion			
MAYOTTE						Mavotte			
ST PIERRE ET						St-Pierre et			
MIQUELON						Miguelon			

Distribution des roches magmatiques en France

Cadre géodynamique du volcanisme mésocénozoïque en France

Le rifting de la Téthys est-il préservé dans les Alpes et les Pyrénées ?

. Où trouve-t-on les vestiges de l'océan alpin ?

3. Quelle est l'origine du volcanisme « Massif central » ?

4. Où est passé le volcanisme associé à la subduction de l'Océan Alpin ?

5. Le magmatisme lié à l'ouverture du bassin liguro-provençal

Le rifting de la Téthys est-il préservé dans les Alpes et les Pyrénées ?

- Spillites du Col d'Ornon : Trias sup
- Pyrénées : Ophites 199+/-2 Ma
- Bretagne : dykes orientés NW-SE jusqu'à 30m d'épaisseur datés à 200 Ma +/- 5Ma. Entre MORB N et basaltes alcalins

Le magmatisme associé aux rifts océaniques - Où trouve-t-on les vestiges de l'océan alpin ?

Figure : reconstitution du fond de l'océan alpin. 1 manteau (Iherzolite) serpentinisée ; 2 gabbros ; 3 brèche de talus ; 4 - volcans à laves en coussins. (d'après Lagabrielle et Cannat, 1990)

- sédiments qui surmontent les basaltes en coussins et par endroits les serpentinites sont principalement des radiolarites et des calcaires pélagiques datés du Jurassique supérieur (callovo-oxfordien).
- datations U-Pb sur mono zircons (Costa et Caby, 2001) dans une veine de diorite et une albitite ou syénite alcaline, situent sa formation aux alentours de 156±3 Ma (dr) à 148±2 Ma (sa).
- âge Sm-Nd obtenu sur roche totale, plagioclase et augite séparés d'un même gabbro (Chalot-Prat et al. 2003) est de 142±22 Ma (début Jurassique Supérieur).
- âge Sm-Nd sur roche totale à 198±22 Ma (Costa et Caby, 2001), déduit de la corrélation entre six gabbros issus de corps distincts, doit être considéré avec prudence dans la mesure où les relations génétiques entre ces gabbros ne sont pas établies (Chalot-Prat et al., 2006).

Où est le magmatisme associé à la subduction de l'océan alpin ?

Intrusions granitiques et dykes basiques associés à la ligne Périadriatique-Insubrienne

42 à 25 Ma, avec un pic entre 33 et 29 Ma

Affinité orogénique : fusion d'un manteau contaminé par des fluides ou peut-être par du matériel crustal continental. Fusion en contexte postcollision, peut-être induite par la rupture de la lithosphère téthysienne ?

Le magmatisme lié à l'ouverture du bassin liguro-10° 0° provençal 20° 30°

Magmatisme associé au Rift Ouest Européen

- 1 Chaîne de la Sioule (5 à 1 Ma)
- 2 Chaîne des Puys (150 000 à 3500 ans)
- 3 Limagne (15 à 2 Ma)
- 4 Mont Dore (2,5 à 0,2 Ma)
- 5 Cézallier (8 à 3 Ma)
- 6 Cantal (11 à 3 Ma)
- 7 Aubrac (9 à 6 Ma)
- 8 Causses (14 à 2 Ma)
- 9 Forez (15 à 13 Ma)
- 10 Deves (2,7 à 0,6 Ma)
- 11 Velay (14 à 1 Ma)
- 12 Vivarais (35 000 à 10 000 ans)
- 13 Coirons (8 à 5,5 Ma)
- 14 Escandorgue-
- Languedoc (3,5 à 0,8 Ma) D'après Nehlig et Traineau (1998)

Tomographie sismique Massif Central

Deux zones à faibles vitesses sismiques (ondes P), visibles jusqu'à 250 km :

- zone du Cantal - Mont Dore

 et la seconde sous le Devès-Velay

Zones de ~ 200 km, contraste de température de 150 à 200°

Granet *et al.,* 1995

Tomographie sismique Eifel

Anomalie de vitesse des ondes P de ~2% , environ 100 km de large, de 70 jusqu'à au moins (?) 400 km sous l'Eifel

Granet, Wilson... : Remontée de petits diapirs mantellique, de 400-650 Km, de 100 à 200 ° plus chauds que le manteau ambiant → mini ou "baby plumes" . Attention tous ces panaches n'ont pas été mis en évidence

<u>'Europa da l'Ouast danuis la Miasàna</u>

A) Rifting Eocène-Oligocène, contemporain de la formation de la racine lith. des Alpes -→Amincissement surtout dans le Nord du MC
Magmatisme seulement du Miocène Inf à Sup.
Dans le Sud : amincissement négligeable, pas de magmatisme

 B) Miocène Sup.: Erosion thermomécanique de la base de la lithosphère

 → phase volcanique majeure (Cantal, Deves, Velay, Aubrac..) et
 soulèvement contemporains
 Erosion thermique gagne le Nord
 tardivement → reprise de l'activité
 volc (Mont Dore, Ch des Puys, Sioule)
 et surrection récente

Calcul des paramètres anisotropes à partir de la biréfringence des ondes de cisaillement : <u>flux</u> <u>mantellique NW-SE</u>

Anisotropie sismique - Barruol & Granet (2002)

Map of the mean splitting parameters calculated from the good measurements at each station from the southern MC and the Pyrenees [barruol et al., 1998]. There is no result at some sites (RAB, ALB, LUC), since they are devoid of good SKS splittingmeasurements. Also plotted are the good quality splitting measurements in the northern MC [Babuska et al., 2002]. The stars indicatethe absence of anisotropy observed at SSB [Barruol & Hoffmann, 1999] and CFF.

Roll back de la lithosphère ionienne : aurait induit un flux asthénosphérique sous le MC + déformation (vers le SE) d'un plume localisé sous le MC

Barruol & Granet (2002)

Chaîne des Puys

- Série magmatique alcaline à tendance potassique dont les termes différenciés présentent une teneur en silice élevée
- Evolution expliquée par un processus de cristallisation fractionnée :
 - basalte primitif (source à 80 km de profondeur)
 - Cristallisation et fractionnement d'Ol, Spi, Cpx en base de croûte; 30 km-→ Trachybasalte
 - Cristallisation et fractionnement Pl, Amph, CPX, Mag→ Trachyandésites
 - Cristallisation et fractionnement Pl, San, Bi, CPX,
 Mag + contamination crustale ; 10 km→Trachytes
- Très légère contamination crustale (qqs %)

Evolution magmatique synéruptive : le Pariou

Chaîne des Puys

Stratovolcan Cantal

- Basaltes s.l. supracantaliens
- **Téphrites-Phonolites**
- Trachyandésites s.l. et Gabbros s.l.
- Trachytes et Rhyolites
- Blocs dans les Avalanches de débris
- Basaltes s.I. infracantaliens

Ages en Millions d'années

Riom-ès-Montagnes

Aurillac

Mau

Chaudes-Aigues

St-Flour

Historique cartographie

- Rames (1873), Fouqué (1881) Boule (1896), Cartes 1/80000
- Brousse et al., Vatin Pérignon et al., de Goër et al. Cartes 1/50000
 - ----> Eruption du Mont St Helens 1980
- Ce Projet BRGM + IGAL, IPG, Universités de Brest, de Clermont-Ferrand, Lausanne, Leicester, Lilles, Orléans, Paris...4 thèses + 5 Mémoires IGAL...+ carte 1/50000 Murat + synthèse au 1/100000

Avalanches de débris

Basaltes supracantaliens

Unité sédimentaire supérieure composée de coulées de débris clastiques qui sont interstratifiées en amont avec des coulées pyroclastiques et des trachyandésites

Unité sédimentaire médiane composé de coulées de débris classées et massives qui évoluent latéradement à des coulées hyperconcentrées puis en aval à des produits fluvio-lacestres Complexe Conglomératique Supérieur

Unité sédimentaire inférieure composée de coulées de débris massives, de produits lacastres à la base (produits volcano-détritiques) et de trachyandésites vers le sommet

Brèche

d'avalanche

de

débris

Basaltes infracantaliens Bassins oligocènes,

Söcle cristallophyllien structure

PuyMary

1800m

Puy Mary

R. Platevoet, 200

Peyre del Cros

Phonolites

- 9 à 5,5 Ma
- pour l'essentiel entre 7,0 et 6,5 Ma, après les avalanches de débris
- relations avec les avalanches de débris ?
- sont discordantes sur le stratovolcan (NW -SE)

Echamps

Cone de projection

no da lave parel masque

umulo-démie

14.654

\bullet scories) basanitique et basaltique rerseyre 14 to 18 to 19 très érodés dans le SW

Basaltes supracantaliens

- 7,5 à 2 Ma
- culminent au Plomb du Cantal à 1855 m
- volcanisme dispersé (coulées, cônes de

édifice actuel : 2500 km², 385 km³

- cône trachyandésitique : 60 km³ (20°-->161km³)
- planèzes : 70 km³
- lahars : 10 km³
- avalanches de débris : 245 km³

Avalanches de débris

7,4-8,6 Ma

7,4-8,6 Ma

7,2-7,4 Ma

7,2-7,4 Ma

6,8-7,2 Ma

CANTAL - Paleoaltitude

